
Firebird Database Housekeeping Utility
Norman Dunbar

25 June 2010 – Document version 1.2

2

Table of Contents
Introduction ... 3
Command Line Options ... 3
Gfix Commands ... 4
Shadow Files ... 5

Activating Shadows .. 6
Killing Shadows ... 7

Set Database Page Buffers .. 8
Limbo Transaction Management ... 9

Listing Limbo Transactions .. 9
Committing Or Rolling Back .. 10
Automatic Two-phase Recovery .. 11

Cache Manager .. 11
Changing The Database Mode .. 11
Setting The Database Dialect .. 13
Database Housekeeping And Garbage Collection ... 14

Garbage ... 14
Setting Sweep Interval .. 16
Manual Garbage Collection .. 16
Disabling Automatic Sweeping ... 17

Database Startup and Shutdown .. 17
Database Shutdown .. 17
Starting a Database .. 19
New Startup and Shutdown States in Firebird 2.0 .. 19

Database Page Space Utilisation ... 20
Database Validation and Recovery .. 21

Database Validation ... 21
Database Recovery ... 23

Database Write Mode ... 23
Version Number ... 24
Caveats .. 24

Shadows .. 24
Response Codes Are Usually Zero .. 25
Force Closing a Database ... 25
Limbo Transactions .. 25

Appendix A: Document history .. 27
Appendix B: License notice .. 28

3

Introduction
Gfix allows attempts to fix corrupted databases, starting and stopping of databases, resolving 'in limbo' transac-
tions between multiple databases, changing the number of page buffers and so on. Gfix is a general purpose tool
for system administrators (and database owners) to use to make various 'system level' changes to their databases.

Almost all the gfix commands have the same format when typed on the command line:

gfix [commands and parameters] database_name

The commands and their options are described in the following sections. The database name is the name of the
primary database file which for a single file database is simply the database name and for multi-file databases,
it is the first data file added.

Coming up in the remainder of this manual, we will discuss the following:

• Command line options for the gfix database utility.
• Shadow file handling.
• Cache and buffer handling.
• Transaction management.
• Cache management.
• Starting and stopping a database.
• And much, much more ...

Command Line Options
Running gfix without a command (or an invalid command) results in the following screen of helpful information
being displayed:

invalid switch --help
please retry, specifying an option
plausible options are:
 -activate activate shadow file for database usage
 -attach shutdown new database attachments
 -buffers set page buffers <n>
 -commit commit transaction <tr / all>
 -cache shutdown cache manager
 -full validate record fragments (-v)
 -force force database shutdown
 -housekeeping set sweep interval <n>
 -ignore ignore checksum errors
 -kill kill all unavailable shadow files
 -list show limbo transactions
 -mend prepare corrupt database for backup
 -mode read_only or read_write
 -no_update read-only validation (-v)
 -online database online <single / multi / normal>
 -prompt prompt for commit/rollback (-l)
 -password default password

Gfix - Database Housekeeping

4

 -rollback rollback transaction <tr / all>
 -sql_dialect set database dialect n
 -sweep force garbage collection
 -shut shutdown <full / single / multi>
 -two_phase perform automated two-phase recovery
 -tran shutdown transaction startup
 -use use full or reserve space for versions
 -user default user name
 -validate validate database structure
 -write write synchronously or asynchronously
 -z print software version number

 qualifiers show the major option in parenthesis

Gfix Commands

Note

In the following discussion, I use the full parameter names in all examples. This is not necessary as each
command can be abbreviated. When the command is shown with '[' and ']' in the name then these are the
optional characters.

For example, the command -validate is shown as -v[alidate] and so can be specified as -v, -va, -
val and so on up to the full -validate version.

For almost all of the options in the following sections, two of the above command line options will be required.
These are -u[ser] and -pa[ssword]. These can be supplied for every command as parameters on the com-
mand line, or can be configured once in a pair of environment variables.

• -u[ser] username

Allows the username of the SYSDBA user, or the owner of the database to be specified This need not be
supplied if the ISC_USER environment variable has been defined and has the correct value.

• -pa[ssword] password

Supplies the password for the username specified above. This need not be supplied if the ISC_PASSWORD
environment variable has been defined and have the correct value.

Note

Up until Firebird 2, any utility which was executed with a password on the command line could result in
other users of the server seeing that password using a command like ps -efx | grep -i pass. From Firbird
2 onwards, this is no longer the case as the password on the command line can no longer be seen by the
ps (or other) commands.

To define the username and password as environment variables on a Linux system:

linux> export ISC_USER=sysdba
linux> export ISC_PASSWORD=masterkey

Alternatively, on Windows:

Gfix - Database Housekeeping

5

C:\> set ISC_USER=sysdba
C:\> set ISC_PASSWORD=masterkey

Warning

This is very insecure as it allows anyone who can access your session the ability to perform DBA functions
that you might not want to allow.

• -u[ser] default user name

• -pa[ssword] default password

If you have not defined the above environment variables, some commands will not work unless you supply -
u[ser] and -pa[ssword] on the command line. For example:

linux> gfix -validate my_employee
linux> Unable to perform operation. You must be either SYSDBA -
or owner of the database

Note

The line that starts with 'Unable to perform' above, has had to be split to fit on the page of the PDF file. In
reality, it is a single line.

However, passing the username and password works:

linux> gfix -validate my_employee -user sysdba -password masterkey

You will notice, hopefully, that some commands do not give any printed output at all. gfix, in the main, only
reports when problems are encountered. Always check the response code returned by gfix to be sure that it
worked. However, see the caveats section below for details because it looks like the response code is always
zero - at least up until Firebird 2.0.

Note

When logging into a database on a remote server, you will always be required to pass the -u[ser] and -
pa[ssword] parameters.

Shadow Files
A shadow file is an additional copy of the primary database file(s). More than one shadow file may exist for any
given database and these may be activated and de-activated at will using the gfix utility.

The following descriptions of activating and de-activating shadow files assume that a shadow file already exists
for the database. To this end, a shadow was created as follows:

linux> isql my_employee;
SQL> create shadow 1 manual '/home/norman/firebird/shadow/my_employee.shd1';
SQL> create shadow 2 manual '/home/norman/firebird/shadow/my_employee.shd2';
SQL> commit;

Gfix - Database Housekeeping

6

SQL> show database;
Database: my_employee
 Owner: SYSDBA
 Shadow 1: "/home/norman/firebird/shadow/my_employee.shd1" manual
 Shadow 2: "/home/norman/firebird/shadow/my_employee.shd2" manual
...
SQL> quit;

It can be seen that the database now has two separate shadow files created, but as they are manual, they have
not been activated. We can see that shadows are in use if we use gstat as follows:

linux> gstat -header my_employee | grep -i shadow
Shadow count 2

Note

Sometimes, it takes gstat a while to figure out that there are shadow files for the database.

Note

Shadow file details can be found in the RDB$FILES table within the database.

Activating Shadows

The command to activate a database shadow is:

gfix -ac[tivate] <shadow_file_name>

This makes the shadow file the new database file and the users are able to continue processing data as normal
and without loss.

In the event that your main database file(s) become corrupted or unreadable, the DBA can activate a shadow file.
Once activated, the file is no longer a shadow file and a new one should be created to replace it. Additionally,
the shadow file should be renamed (at the operating system prompt) to the name of the old database file that
it replaces.

Warning

It should be noted that activating a shadow while the database itself is active can lead to corruption of the
shadow. Make sure that the database file is really unavailable before activating a shadow.

Once a shadow file has been activated, you can see the fact that there are active shadows in the output from gstat:

linux> gstat -header my_employee | grep -i shadow
Shadow count 2
Attributes active shadow, multi-user maintenance

Note

The DBA can set up the database to automatically create a new shadow file in the event of a current shadow
being activated. This allows a continuous supply of shadow files and prevents the database ever running without
one.

Gfix - Database Housekeeping

7

Killing Shadows

The command to kill all unavailable database shadows, for a specific database, is:

gfix -k[ill] database_name

In the event that a database running with shadow files loses a shadow, or a shadow becomes unusable for some
reason, the database will stop accepting new connections until such time as the DBA kills the faulty shadow
and, ideally, creates a new shadow to replace the broken one.

The following (contrived) example, shows what happens when the database loses a shadow file and an attempt
is made to connect to that database. There are two sessions in the following example, one is connected to the
database while the second deletes a shadow file and then tries to connect to the database. The command line
prompts shows which of the two sessions we are using at the time.

First, the initial session is connected to the database and can see that there are two shadow files attached:

linux_1>isql my_employee
Database: my_employee
SQL> show database;
Database: my_employee
 Owner: SYSDBA
Shadow 1: "/home/norman/firebird/shadow/my_employee.shd1" manual
Shadow 2: "/home/norman/firebird/shadow/my_employee.shd2" manual
 ...

In the second session, we delete one of the shadow files, and then try to connect to the database

linux_2> rm /home/norman/firebird/shadow/my_employee.shd2
linux_2> isql_my_employee
Statement failed, SQLCODE = -901
lock conflict on no wait transaction
-I/O error for file "/home/norman/firebird/shadow/my_employee.shd2"
-Error while trying to open file
-No such file or directory
-a file in manual shadow 2 in unavailable
Use CONNECT or CREATE DATABASE to specify a database
SQL> quit;

The second session cannot connect to the database until the problem is fixed. The DBA would use the gfix -
k[ill] command to remove details of the problem shadow file from the database and once completed, the second
(and subsequent) sessions would be able to connect.

linux_2> gfix -kill my_employee

linux_2> isql my_employee
Database: my_employee
SQL> show database;
Database: my_employee
 Owner: SYSDBA
Shadow 1: "/home/norman/firebird/shadow/my_employee.shd1" manual
...

Gfix - Database Housekeeping

8

The database now has a single shadow file where before it had two. It is noted, however, that gstat still shows
the database as having two shadows, even when one has been removed.

linux> gstat -header my_employee | grep -i shadow
Shadow count 2
Attributes active shadow, multi-user maintenance

Note

In addition to the above strange result, if I subsequently DROP SHADOW 1 and COMMIT, to remove the re-
maining shadow file, gstat now shows that the shadow count has gone up to three when it should have gone
down to zero!

Set Database Page Buffers
The database cache is an area of RAM allocated to store (cache) database pages in memory to help improve the
efficiency of the database performance. It is far quicker to read data from memory that it is to have to physically
read the data from disc.

The size of the database cache is dependent on the database page size and the number of buffers allocated, a
buffer is the same size as a database page, and whether the installation is using Classic or Superserver versions
of Firebird.

In a Classic Server installation, each connection to the database gets its own relatively small cache of 75 pages
while Superserver creates a much larger cache of 2,048 pages which is shared between all the connections.

The command to set the number of cache pages is:

gfix -b[uffers] BUFFERS database_name

This command allows you to change the number of buffers (pages) allocated in RAM to create the database
cache.

You cannot change the database page size in this manner, only the number of pages reserved in RAM. One
parameter is required which must be numeric and between 50 (the minimum) and 131,072 (the maximum).

The setting applies only to the database you specify. No other databases running on the same server are affected.

The following example shows the use of gstat to read the current number of buffers, the gfix utility being used
to set the buffers to 4,000 pages and gstat being used to confirm the setting. The value of zero for page buffers
indicates the default setting for the server type is in use.

Note

You can use the gstat command line utility to display the database details with the command line: gstat -header
db_name however, to run gstat, you need to be logged into the server - it cannot be used remotely.

linux> gstat -header my_employee | grep -i "page buffers"
Page buffers 0

linux> gfix -buffers 4000 my_employee

Gfix - Database Housekeeping

9

linux> gstat -header my_employee | grep -i "page buffers"
Page buffers 4000

Limbo Transaction Management
Limbo transactions can occur when an application is updating two (or more) databases at the same time, in the
same transaction. At COMMIT time, Firebird will prepare each database for the COMMIT and then COMMIT
each database separately.

In the event of a network outage, for example, it is possible for part of the transaction to have been committed
on one database but the data on the other database(s) may not have been committed. Because Firebird cannot
tell if these transactions (technically sub-transactions) should be committed or rolled back, they are flagged as
being in limbo.

Gfix offers a number of commands to allow the management of these limbo transactions.

Note

The following examples of limbo transactions are based on Firebird 1.5 and have kindly been provided by
Paul Vinkenoog. Because of the limitation of my setup, I am unable to create limbo transactions in my current
location.

In the spirit of consistency, however, I have renamed Paul's servers and database locations to match the re-
mainder of this document.

Listing Limbo Transactions

The gfix command -l[ist] will display details of transactions that are in limbo. If there is no output, then
there are no transactions in limbo and no further work need be done. The command is:

gfix -l[ist] database_name

An example of listing limbo transactions is shown below. This command is run against the local database on the
server named linux where a multi-database transaction had been run connected to databases linux@my_employee
and remote:testlimbo. Both of these database names are aliases.

linux> gfix -list my_employee
Transaction 67 is in limbo.
 Multidatabase transaction:
 Host Site: linux
 Transaction 67
has been prepared.
 Remote Site: remote
 Database path: /opt/firebird/examples/testlimbo.fdb

If the command is run against the remote database then nothing will be listed because that database does not
have any limbo transactions - the transaction that went into limbo, when the network failed, for example, was
initiated on the local database.

Gfix - Database Housekeeping

10

You may also supply the -p[rompt] option to the command and you will be prompted to COMMIT or ROLL-
BACK each detected limbo transaction. In this case, the command would be:

gfix -l[ist] -p[rompt] database_name

An example of this is shown below.

linux> gfix -list -prompt my_employee
Transaction 67 is in limbo.
 Multidatabase transaction:
 Host Site: linux
 Transaction 67
has been prepared.
 Remote Site: remote
 Database path: /opt/firebird/examples/testlimbo.fdb
Commit, rollback or neither (c, r, or n)?

Committing Or Rolling Back

When a limbo transaction has been detected, the DBA has the option of committing or rolling back one or more
of the transactions reported as being in limbo.

When more than one transaction is listed, the DBA can either commit or roll back all transactions in limbo, or
a specific transaction number.

The following commands show the -c[ommit] option being used, but the -r[ollback] option applies as
well, it all depends on what the DBA is trying to achieve.

To commit every limbo transaction on the database, the following command would be used:

gfix -commit all database_name

If the DBA wanted to commit a single transaction, then the command would change to the following:

gfix -commit TXN database_name

Where TXN is the transaction number to be committed.

When either of these options are user, there is no feedback from gfix to advise you that the commit actually
worked. You would need to rerun the gfix -list command to make sure that all, or the selected, limbo transactions
had indeed gone.

You cannot commit or rollback a transaction that is not in limbo. If you try , the following will occur:

linux> gfix -commit 388 my_employee
failed to reconnect to a transaction in database my_employee
transaction is not in limbo
-transaction 388 is active
unknown ISC error 0

When committing or rolling back all limbo transactions, the -p[rompt] option can be specified. It is, however,
not permitted when processing a single transaction. An example of using the -p[rompt] option has been
shown above under listing limbo transactions.

Gfix - Database Housekeeping

11

Automatic Two-phase Recovery

Gfix can be used to perform automatic two-phase recovery. The command for this is -t[wo_phase] and, like
-c[ommit] and -r[ollback] above, requires either 'all' or a transaction number.

The output of the -l[ist] command shows what will happen to each listed transaction in the event that the
DBA runs the -t[wo_phase] command.

The command also takes the -p[rompt] option, as above, when used to process all transaction.

The command line to carry out automatic two-phase recovery is:

gfix -t[wo_phase] TXN database_name or

gfix -t[wo_phase] all database_name

As above, TXN is a single transaction number from the list of limbo transactions.

Note

Paul has noted that when using the -c[ommit], -r[ollback] or -t[wo_phase] options, the output is
exactly the same and appears to show that these three are all just synonyms for the -l[ist] -p[rompt]
pair of options. This occurred whether or not Paul used the transaction number, 67, or 'all' in the command line.

Cache Manager
When the help page for gfix is displayed there is a message in the output for the -ca[che] option which states:

...
-ca[che] shutdown cache manager
...

However, when called this option simply displays the help page again.

The question that immediately springs to my mind is, if we can shutdown the cache manager with this option,
how do we start it back up again?

Changing The Database Mode
Databases can be set to run in one of two modes, read only - where no updates are permitted, and read/write
- where both reading and writing of data is permitted. By default, Firebird creates read/write databases and as
such, all read/write databases must be placed on a file system which allows writing to take place.

Should you wish to put a Firebird database on a CD, for example, you wouldn't be able to do so. After a new
database has been populated with data it can be changed to read only mode, and then used on a CD (or other
read only file systems) with no problems.

Gfix - Database Housekeeping

12

Note

Firebird uses SQL internally to maintain its internal structures with details about transactions, for example, and
this is the reason that a database must be placed on a read/write file system regardless of whether only SELECT
statements are run or not.

Note

Only databases in dialect 3 can be changed to read only mode.

The command to set the required mode for a database is:

gfix -mo[de] MODE database_name

The command takes two parameters, the MODE which must be one of the following:

• read_only - the database cannot be written to.
• read_write - the database can be written to.

The meaning of the two modes should be quite meaningful.

The second parameter is a database name to apply the mode change to.

The following example shows how to put a database into read only mode, and then change it back again. The
example also shows what happens when you try to update the database while running in read only mode.

linux> gfix -mode read_only my_employee

linux> isql my_employee
Database: my_employee

SQL> create table test(stuff integer);
Statement failed, SQLCODE = -902
Dynamic SQL Error
-attempted update on read-only database

SQL> quit;

linux> gfix -mode read_write my_employee

linux> isql my_employee
Database: my_employee

SQL> create table test(stuff integer);

SQL> show table test;
STUFF INTEGER Nullable

SQL> quit;

If there are any connections to the database in read/write mode when you attempt to convert the database to read
only, the attempt will fail as shown below with Firebird 1.5.

linux> gfix -mode read_only my_employee
lock time-out on wait transaction
-lock time-out on wait transaction

Gfix - Database Housekeeping

13

-object my_employee is in use

linux> echo $?
0

Warning

As with many failures of gfix, the response code returned to the operating system is zero.

Under Firebird 2, the error message is more self explanatory:

linux> gfix -mode read_only my_employee
lock time-out on wait transaction
-object /opt/firebird/databases/my_employee.fdb is in use

linux> echo $?
0

Setting The Database Dialect
The dialect of the database is simply a term that defines the specific features of the SQL language that are
available when accessing that database. There are three dialects at present (Firebird version 2.0), these are:

• Dialect 1 stores date and time information in a DATE data type and has a TIMESTAMP data type which is
identical to DATE. Double quotes are used to delimit string data. The precision for NUMERIC and DECIMAL
data types is less than a dialect 3 database and if the precision is greater than 9, Firebird stores these as
DOUBLE PRECISION. INT64 is not permitted as a data type.

• Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It is intended to
assist debugging of possible problems with legacy data when migrating a database from dialect 1 to 3. This
dialect cannot be set for a database using gfix. (See below.)

• Dialect 3 databases allow numbers (DECIMAL and NUMERIC data types) to be stored as INT64 when the
precision is greater than 9. The TIME data type is able to be used and stores time data only. The DATE data
type stores on date information. Double quotes can be used but only for identifiers that are case dependent,
not for string data which has to use single quotes.

The command to change the SQL dialect for a database is:

gfix -s[ql_dialect] DIALECT database_name

The DIALECT parameter is simply 1 or 3.

The following example changes a database to use dialect 3 which will allow many newer features of SQL 92
to be used.

linux> gfix -sql_dialect 3 my_employee

linux> gstat -header my_employee | grep dialect
Database dialect 3

linux> gfix -sql_dialect 1 my_employee

linux> gstat -header my_employee | grep dialect

Gfix - Database Housekeeping

14

Database dialect 1

Because you cannot use gstat remotely, you may also use the isql command SHOW SQL DIALECT from a remote
location to see which dialect your client and database are using, as follows:

remote> isql my_employee -user norman -password whatever
Database: my_employee

SQL> show sql dialect;
Client SQL dialect is set to: 3 and database SQL dialect is: 3

Although dialect 2 is possible on the client, trying to set a dialect of 2 will fail on the server as the following
example shows.

linux> gfix -sql_dialect 2 my_employee
Database dialect 2 is not a valid dialect.
-Valid database dialects are 1 and 3.
-Database dialect not changed.

To set dialect 2 for your client connection, you use isql as follows:

linux> isql my_employee
Database: my_employee

SQL> set sql dialect 2;
WARNING: Client SQL dialect has been set to 2 when connecting -
to Database SQL dialect 3 database.

SQL> show sql dialect;
Client SQL dialect is set to: 2 and database SQL dialect is: 3

Note

The WARNING line above has had to be split to fit on the page of the PDF version of this manual. In reality,
it is a single line of text.

Database Housekeeping And Garbage Collection

Garbage

Garbage, for want of a better name, is the detritus that Firebird leaves around in the database after a rollback has
been carried out. This is basically a copy of the row(s) from the table(s) that were being updated (or deleted)
by the transaction prior to the rollback.

Because Firebird uses multi-generational architecture, every time a row is updated or deleted, Firebird keeps a
copy in the database. These copies use space in the pages and can remain in the database for some time.

In addition to taking up space in the database, these old copies can lead to increased transaction startup times.

There are two types of garbage:

Gfix - Database Housekeeping

15

• Remnants from a committed transaction.

• Remnants from an aborted (rolled back) transaction.
These remnants are simply older copies of the rows that were being updated by the respective transactions. The
differences are that:

• Whenever a subsequent transaction reaches garbage from a committed transaction, that garbage is automat-
ically cleared out.

• Rolled back garbage is never automatically cleared out.
This means that on a database with a lot of rolled back transactions, there could be a large build up of old copies
of the rows that were updated and then rolled back.

Firebird will automatically sweep through the database and remove the remnants of rolled back transactions
and this has two effects:

• The database size is reduced as the old copies of rows are deleted.

• The performance of the database may be affected while the sweep is in progress.

Note

One other method of clearing out old rolled back transactions' garbage is simply to carry out a database backup.

In the Super Server version of Firebird 2.0, garbage collection has been vastly improved. There are now three
different ways of operation and these are configurable by setting the GCPOLICY parameter in the firebird.
conf configuration file. By default, Super Server uses combined while Classic Server uses cooperative. The
other option is background.

Note

Classic Server ignores the setting and always uses cooperative garbage collection.

Cooperative Garbage Collection

This is the default setting, indeed the only setting, that Classic Server uses. In this mode, the normal operation
- as described above - takes place. When a full scan is performed (perhaps during a backup) old versions of the
rows are deleted at that point in time.

Background garbage Collection

Super Server has, even since before version 1.0, performed background garbage collection where the server
informs the garbage collector about old versions of updated and deleted rows when they are ready to be cleaned
up. This helps avoid the need to force a full scan of each record in the database tables to get the garbage collector
to remove these old versions.

When all rows in a table are read by the server, any old record versions are flagged to the garbage collector as
being ready to be cleared out. They are not deleted by the scanning process as in the cooperative method. The
garbage collector runs as a separate background thread and it will, at some point, remove these older record
versions from the database.

Gfix - Database Housekeeping

16

Combined Garbage Collection

This is the default garbage collection method for Super Server installations. In this mode, both the above methods
are used together.

Setting Sweep Interval
The default sweep interval for a new database is 20,000. The sweep interval is the difference between the oldest
interesting transaction or OIT and the next transaction number.

Note

This doesn't mean that every 20,000 transaction a sweep will take place. It will take place when the difference
between the OIT and the next transaction is greater than the sweep interval.

An interesting transaction is one which has not yet committed. It may be still active, in limbo or may have been
rolled back.

The sweep facility runs through the database and gets rid of old rows in tables that are out of date. This prevents
the database from growing too big and helps reduce the time it takes to start a new transaction on the database.

Note

If you find that starting a new transaction takes a long time, it may be a good idea to run a manual sweep of
the database in case the need for a sweep is causing the hold-up.

You can check if a manual sweep may be required by running the gstat utility to check the database header page
and extract the oldest and next transaction numbers from the output. If the gap is small (less than the sweep
interval) then a manual sweep may be in order. Alternatively, the SHOW DATABASE command in isql will also
show the details you need.

A manual sweep can be run by using the -s[weep] command. (See below).

To alter the database's automatic sweep interval, use the following command:

gfix -h[ousekeeping] INTERVAL database_name

The INTERVAL parameter is the new value for the sweep interval. The database name parameter is the database
upon which you wish to alter the setting for automatic sweeping. The following example shows the setting being
changed from the default to a new value of 1,000.

linux> gfix -h 1000 my_employee

linux> gstat -header my_employee | grep Sweep
Sweep interval: 1000

Manual Garbage Collection
If automatic sweeping has been turned off, or only runs rarely because of the sweep interval setting, the DBA
can manually force a sweep to be performed. The command to carry out this task is:

Gfix - Database Housekeeping

17

gfix -s[weep] [-i[gnore]] database_name

This command will force the garbage left over from old rolled back transactions to be removed, reducing the
database size and improving the performance of new transactions.

The -i[gnore] option may be supplied. This forces Firebird to ignore checksum errors on database pages.
This is not a good idea and should rarely need to be used, however, if your database has suffered some problems
it might be necessary to use it.

The following example shows a manual database sweep being implemented:

linux> gfix -sweep my_employee

Disabling Automatic Sweeping

If you set the sweep interval to zero then automatic sweeping will be disabled. This implies that there will be
no automatic housekeeping done so your database performance will not suffer as a result of the processing
requirements of the automatic sweep.

If you disable sweeping you are advised to run a manual sweep at regular intervals when the database is quiet.
Alternatively, simply make sure that you take regular backups of the database and as this is something you
should be doing anyway, it shouldn't be a problem.

Database Startup and Shutdown

Note

The first part of this section describes the shutdown and startup options up to Firebird 2.0. There is a separate
section at the end which discusses the new states for starting and stopping a database using Firebird 2.0 onwards.

Database Shutdown

If there is maintenance work required on a database, you may wish to close down that database under certain cir-
cumstances. This is different from stopping the Firebird server as the server may well be running other databases
which you do not wish to affect.

The command to close a database is:

gfix -shut OPTION TIMEOUT database_name

The TIMEOUT parameter is the time, in seconds, that the shutdown must complete in. If the command cannot
complete in the specified time, the shutdown is aborted. There are various reasons why the shutdown may not
complete in the given time and these vary with the mode of the shutdown and are described below.

The OPTION parameter is one of the following:

• -at[tach] - prevents new connections.
• -tr[an] - prevents new transactions.

Gfix - Database Housekeeping

18

• -f[orce] - simply aborts all connections and transactions.

When a database is closed, the SYSDBA or the database owner can still connect to perform maintenance oper-
ations or even query and update the database tables.

Note

If you specify a long time for the shutdown command to complete in, you can abort the shutdown by using the
-online command (see below) if the timeout period has not completed.

Preventing New Connections

-at[tach] : this parameter prevents any new connections to the database from being made with the exception
of the SYSDBA and the database owner. The shutdown will fail if there are any sessions connected after the
timeout period has expired. It makes no difference if those connected sessions belong to the SYSDBA, the
database owner or any other user. Any connections remaining will terminate the shutdown with the following
details:

linux> gfix -shut -attach 5 my_employee
lock conflick on no wait transaction
-database shutdown unsuccessful

Anyone other than the SYSDBA or database owner, attempting to connect to the database will see the following:

linux> isql my_employee -user norman -password whatever
Statement failed, SQLCODE = -901
database my_employee shutdown
Use CONNECT or CREATE DATABASE to specify a database
SQL>

Connections in the database will still be able to start new transactions or complete old ones.

Preventing New Transactions

-tr[an] : prevents any new transactions from being started and also prevents new connections to the database.
If there are any active transactions after the timeout period has expired, then the shutdown will fail as follows:

linux> gfix -shut -tran 5 my_employee
lock conflick on no wait transaction
-database shutdown unsuccessful

If any user connected to the database being shutdown with the -tr[an] tries to start a new transaction during
the shutdown timeout period, the following will result:

SQL> select * from test;
Statement failed, SQLCODE = -902
database /home/norman/firebird/my_employee.fdb shutdown in progress
Statement failed, SQLCODE = -902
database /home/norman/firebird/my_employee.fdb shutdown in progress
Statement failed, SQLCODE = -901
Dynamic SQL Error
-SQL error code = -901
-invalid transaction handle (expecting explicit transaction start)

Gfix - Database Housekeeping

19

Force Closure

-f[orce] : shuts down with no regard for the connection or transaction status of the database. No new con-
nections or transactions are permitted and any active sessions are terminated along with any active transactions.

Anyone other than SYSDBA or the database owner trying to connect to the database during the timeout period
will not be able to connect successfully or start any (new) transactions.

Be nice to your users, use the -f[orce] option with great care.

Warning

There is a bug in Classic Server which still exists at version 2.0. The bug is such that the -f[orce] option
behaves in exactly the same way as the -at[tach] option.

Starting a Database

Once all maintenance work required on a database has been carried out, you need to restart the database to allow
normal use again. (See shutdown option above for details of closing a database.)

The -o[nline] command allows a database to be restarted. It takes a single parameter which is the database
name as follows:

gfix -o[nline] database_name

The following example shows a closed database being started.

linux> gfix -online my_employee

New Startup and Shutdown States in Firebird 2.0

The above discussion of stopping and starting a database apply to all versions of the server up to version 2.0.
From 2.0 the commands will work as described above, but a new state has been added to define exactly how the
database is to be stopped or started. The commands change from those described above to the following:

gfix -shut STATE OPTION TIMEOUT database_name

gfix -o[nline] STATE database_name

STATE is new in Firebird 2.0 and is one of the following:

• normal - This is the default state for starting the database backup. It allows connections from any authorised
users - not just SYSDBA or the database owner. This option is not accepted for shutdown operations.

• multi - this is the default mode as described above. When the database is shutdown as above, or using
the multi state, then unlimited connections can be made by the SYSDBA or the database owner. No other
connections are allowed.

• single - Similar to the multi option above, but only one SYSDBA or database owner connection is allowed.

Gfix - Database Housekeeping

20

• full - Shutdown and don't allow any connections from anyone, even SYSDBA or the database owner. This
is not an acceptable option for starting up a database.

Note

There is no leading dash for the state parameters, unlike the command itself and the -shut OPTION.

There is a hierarchy of states for a database. The above list shows them in order with normal at the top and
full at the bottom.

This hierarchy is important, you cannot shutdown a database to a higher or equal level that it currently is, nor
can you startup a database to a lower or equal level.

If you need to identify which level a database is currently running at, gstat will supply the answers. The following
example puts a database fully online then progressively shuts it down to fully offline. At each stage, gstat is run
to extract the Attributes of the database.

linux> gfix -online normal my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes

linux> gfix -shut multi -attach 0 my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes multi-user maintenance

linux> gfix -shut single -attach 0 my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes single-user maintenance

linux> gfix -shut full -attach 0 my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes full shutdown

linux>

Database Page Space Utilisation
When a database page is being written to, Firebird reserves 20% of the page for future use. This could be used
to extend VARCHAR columns that started off small and then were updated to a longer value, for example.

If you wish to use all the available space in each database page, you may use the -use command to configure
the database to do so. If you subsequently wish to return to the default behaviour, the -use command can be
used to revert back to leaving 20% free space per page.

Note

Once a page has been filled to 'capacity' (80 or 100%) changing the page usage setting will not change those
pages, only subsequently written pages will be affected.

Gfix - Database Housekeeping

21

The -use command takes two parameters as follows:

gfix -use USAGE database_name

The USAGE is one of:

• full : use 100% of the space in each database page.
• reserve : revert to the default behaviour and only use 80% of each page.

The following example configures a database to use all available space in each database page:

linux> gfix -use full my_employee
linux> gstat -header my_employee | grep Attributes
Attributes no reserve

The following example sets the page usage back to the default:

linux> gfix -use reserve my_employee
linux> gstat -header my_employee | grep Attributes
Attributes

If you are using full page utilisation then the Attributes show up with 'no reserve' in the text. This doesn't appear
for normal 80% utilisation mode.

Database Validation and Recovery

Database Validation

Sometimes, databases get corrupted. Under certain circumstances, you are advised to validate the database to
check for corruption. The times you would check are:

• When an application receives a database corrupt error message.
• When a backup fails to complete without errors.
• If an application aborts rather than shutting down cleanly.
• On demand - when the SYSDBA decides to check the database.

Note

Database validation requires that you have exclusive access to the database. To prevent other users from ac-
cessing the database while you validate it, use the gfix -shut command to shutdown the database.

When a database is validated the following checks are made and corrected by default:

• Orphan pages are returned to free space. This updates the database.
• Pages that have been misallocated are reported.
• Corrupt data structures are reported.

There are options to perform further, more intensive, validation and these are discussed below.

Gfix - Database Housekeeping

22

Default Validation

The command to carry out default database validation is:

gfix -v[alidate] database_name

This command validates the database and makes updates to it when any orphan pages are found. An orphan page
is one which was allocated for use by a transaction that subsequently failed, for example, when the application
aborted. In this case, committed data is safe but uncommitted data will have been rolled back. The page appears
to have been allocated for use, but is unused.

This option updates the database and fixes any corrupted structures.

Full Validation

By default, validation works at page level. If no need to go deeper and validate at the record level as well, the
command to do this is:

gfix -v[alidate] -full database_name

using this option will validate, report and update at both page and record level. Any corrupted structures etc
will be fixed.

Read-only Validation

As explained above, a validation of a database will actually validate and update the database structures to,
hopefully, return the database to a working state. However, you may not want this to happen and in this case, you
would perform a read only validation which simply reports any problem areas and does not make any changes
to the database.

To carry out a read only validation, simply supply the -n[o_update] option to whichever command line you
are using for the validation. To perform a full validation, at record and page level, but in reporting mode only,
use the following command:

gfix -v[alidate] -full -n[o_update] database_name

On the other hand, to stay at page level validation only, the command would be:

gfix -v[alidate] -n[o_update] database_name

Ignore Checksum Errors

Checksums are used to ensure that data in a page is valid. If the checksum no longer matches up, then it is
possible that a database corruption has occurred. You can run a validation against a database, but ignore the
checksums using the -i[gnore] option.

This option can be combined with the -n[o_update] option described above and applies to both full and
default validations. So, to perform a full validation and ignore checksums on a database, but reporting errors
only, use the following command:

gfix -v[alidate] -full -i[gnore] -n[o_update] database_name

Gfix - Database Housekeeping

23

Alternatively, to carry out a page level validation, ignoring checksum errors but updating the database structures
to repair it, the command would be:

gfix -v[alidate] -i[gnore] database_name

Ignoring checksums would allow a corrupted database to be validated (unless you specify the -n[o_update]
option) but it is unlikely that the recovered data would be usable, if at all, present.

Database Recovery
If the database validation described above produces no output then the database structures can be assumed to
be valid. However, in the event that errors are reported, you may have to repair the database before it can be
used again.

Recover a Corrupt Database

The option required to fix a corrupted database is the gfix -m[end] command. However, it cannot fix all problems
and may result in a loss of data. It all depends on the level of corruption detected. The command is:

gfix -m[end] database_name

This causes the corruptions in data records to be ignored. While this sounds like a good thing, it is not. Subsequent
database actions (such as taking a backup) will not include the corrupted records, leading to data loss.

Important

The best way to avoid data loss is to make sure that you have enough regular backups of your database and to
regularly carry out test restorations. There is no point taking backups every night, for example, if they cannot
be used when required. Test always and frequently.

Equally, when attempting to recover a potentially corrupted database, always work with a copy of the main
database file and never with the original. Using the -mend option can lead to silent deletions of data because
gfix doesn't care about internal database constraints like foreign keys etc, the -mend option simply says to gfix
"go ahead and clean out anything you don't like".

Database Write Mode
Many operating systems employ a disc cache mechanism. This uses an area of memory (which may be part
of your server's overall RAM or may be built into the disc hardware) to buffer writes to the hardware. This
improves the performance of applications that are write intensive but means that the user is never certain when
their data has actually been written to the physical disc.

With a database application, it is highly desirable to have the data secured as soon as possible. Using Firebird,
it is possible to specify whether the data should be physically written to disc on a COMMIT or simply left to the
operating system to write the data when it gets around to it.

To give the DBA or database owner full control of when data is written, the gfix -w[rite] command can be used.
The command takes two parameters:

gfix -write MODE database_name

Gfix - Database Housekeeping

24

The MODE parameter specifies whether data would be written immediately or later, and is one of:

• sync - data is written synchronously. This means that data is flushed to disc on COMMIT. This is safest
for your data.

• async - data is written asynchronously. The operating system controls when the data is actually written to
disc.

If your system is highly robust, and protected by a reliable UPS (uninterruptable Power Supply) then it is possible
to run asynchronously but for most systems, synchronous running is safest this will help prevent corruption in
the event of a power outage or other uncontrolled shutdown of the server and/or database.

Note

Firebird defaults to synchronous mode (forced writes enabled) on Linux, Windows NT, XP, 2000, 2003 and
Vista.

This command has no effect on Windows 95, 98 and ME.

Warning

Cache flushing on Windows servers (up to but not including Vista - which has not been confirmed yet) is
unreliable. If you set the database to async mode (forced writes disabled) then it is possible that the cache
will never be flushed and data could be lost if the server is never shutdown tidily.

Warning

If your database was originally created with Interbase 6 or an early beta version of Firebird then the database
will be running in asynchronous mode - which is not ideal.

Version Number
The -z option to gfix simply prints out the version of the Firebird utility software that you are running. It takes
no parameters as the following example (running on Linux) shows.

linux> gfix -z
gfix version LI-V2.0.0.12748 Firebird 2.0

Caveats
This section summarises the various problems that you may encounter from time to time when using gfix. They
have already been discussed above, or mentioned in passing, but are explained in more details here.

Shadows

The gstat seems to take some time to respond to the addition of shadow files to a database. After adding two
shadows to a test database, gstat still showed that there was a Shadow count of zero.

Gfix - Database Housekeeping

25

Even worse, after killing the second shadow file and running the DROP SHADOW command in isql to remove
the one remaining shadow file, gstat decided that there were now three shadow files in use.

Response Codes Are Usually Zero

Even using Firebird version 2 it appears that many commands, which fail to complete without an error, return
a response of 0 to the operating system.

For example, the following shows two attempts to shut down the same database, the second one should fail - it
displays an error message - but still returns a zero response to the operating system. This makes it impossible to
built correctly error trapped database shutdown scripts as you can never tell whether it actually worked or not.

linux> gfix -shut -force 5 my_employee
linux> echo $?
0

linux> gfix -shut -force 5 my_employee
Target shutdown mode is invalid for database -
"/home/norman/firebird/my_employee.fdb"
linux> echo $?
0

Force Closing a Database

Under classic server, using the -f[orce] option to the -shut command acts exactly the same as the -
at[tach] option.

Limbo Transactions

There are a couple of problems with limbo transactions as discovered by Paul in his testing.

Limbo Transaction Options - All The Same?

When processing limbo transactions, it appears under Firebird 1.5 at least, that the -l[ist] -p[rompt]
option is called regardless of whether you use -c[ommit], -r[ollback] or -t[wo_phase]. The outcome
is the same regardless of whether the DBA specifies a specific transaction number or 'all' on the command line
- a prompt is given with the option to commit, rollback or neither.

Limbo Transactions - Can Be Backed Up

Paul's testing of limbo transactions revealed that it is possible to make a backup of a database with limbo trans-
actions. This backup can then be used to create a new database and the limbo transactions will still be able to be
listed. This applies to a filesystem copy of the database and to version 1.5 of Firebird.

If you attempt to list the limbo transactions in the copy database and the original database has been deleted,
renamed or has been set to read-only, then gfix will present you with a request to supply the correct path to
the original database

Gfix - Database Housekeeping

26

linux>cd /home/norman/firebird
linux>cp my_employee.fdb my_new_employee.fdb

linux> mv my_employee.fdb my_old_employee.fdb

linux> gfix -list /home/norman/firebird/my_new_employee.fdb
Transaction 67 is in limbo.
Could not reattach to database for transaction 67.
Original path: /home/norman/firebird/my_employee.fdb

Enter a valid path: /home/norman/firebird/my_old_employee.fdb

 Multidatabase transaction:
 Host Site: linux
 Transaction 67
has been prepared.
 Remote Site: remote
 Database path: /opt/firebird/examples/testlimbo.fdb

In the above example, the original database my_employee.fdb was first of all copied using the operating system
command cp to my_new_employee.fdb and then renamed to my_old_employee.fdb.

Gfix was then run on the copy named my_new_employee.fdb and it noted the limbo transaction. However, it could
not find the original database file as it had been renamed, so gfix prompted for the path to the original database
file. When this was entered, gfix happily listed the details.

Warning

This implies that if you have a database with limbo transactions and you copy it using the operating system
utilities and subsequently run gfix against the new database, it is possible to have gfix fix limbo transactions
in the original database file and not in the one you think it is updating - the copy.

It is also a good warning about making copies of databases without using the correct tools for the job.

Gfix - Database Housekeeping

27

Appendix A:
Document history

The exact file history is recorded in the manual module in our CVS tree; see http://sourceforge.net/cvs/?group_
id=9028. The full URL of the CVS log for this file can be found at http://firebird.cvs.sourceforge.net/viewvc/
firebird/manual/src/docs/firebirddocs/fbutil_gfix.xml?view=log

Revision History
1.0 19 June 2007 ND Created as a chapter in the Command Line Utilities manual.

1.1 20 October
2009

ND More minor updates and converted to a stand alone manual.

1.2 25 June 2010 ND Fixed spacing on a couple of lists. Added an enhancement to the details
of the -mend recovery option. It can lead to a loss of data.

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/src/docs/firebirddocs/fbutil_gfix.xml?view=log
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/src/docs/firebirddocs/fbutil_gfix.xml?view=log

Gfix - Database Housekeeping

28

Appendix B:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/man-
ual/pdl.html (HTML).

The Original Documentation is titled Firebird Database Housekeeping Utility.

The Initial Writer of the Original Documentation is: Norman Dunbar.

Copyright (C) 2007–2009. All Rights Reserved. Initial Writer contact: NormanDunbar at users dot sourceforge
dot net.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird Database Housekeeping Utility
	Table of Contents
	Introduction
	Command Line Options
	Gfix Commands
	Shadow Files
	Activating Shadows
	Killing Shadows

	Set Database Page Buffers
	Limbo Transaction Management
	Listing Limbo Transactions
	Committing Or Rolling Back
	Automatic Two-phase Recovery

	Cache Manager
	Changing The Database Mode
	Setting The Database Dialect
	Database Housekeeping And Garbage Collection
	Garbage
	Cooperative Garbage Collection
	Background garbage Collection
	Combined Garbage Collection

	Setting Sweep Interval
	Manual Garbage Collection
	Disabling Automatic Sweeping

	Database Startup and Shutdown
	Database Shutdown
	Preventing New Connections
	Preventing New Transactions
	Force Closure

	Starting a Database
	New Startup and Shutdown States in Firebird 2.0

	Database Page Space Utilisation
	Database Validation and Recovery
	Database Validation
	Default Validation
	Full Validation
	Read-only Validation
	Ignore Checksum Errors

	Database Recovery
	Recover a Corrupt Database

	Database Write Mode
	Version Number
	Caveats
	Shadows
	Response Codes Are Usually Zero
	Force Closing a Database
	Limbo Transactions
	Limbo Transaction Options - All The Same?
	Limbo Transactions - Can Be Backed Up

	A. Document history
	B. License notice

