Extracting META information from Interbase/Firebird SQL
(INFORMATION_SCHEMA)

13 November 2007 22:30

By: http://www.alberton.info/firebird_sql _meta_info.html

The SQL 2003 Standard introduced a new schema called INFORMATION_SCHEMA. PostgreSQL, SQL
Server and now MySQL have it. ORACLE, DB2, Sybase, Ingres, Informix and other DBMS have something
similar, usually called System Tables. The INFORMATION_SCHEMA is meant to be a set of views you can
query using regular SELECT statements, for instance if you need to know something about the defined
triggers, or the structure of a table to which you have access. Firebird doesn't have it, but you can retrieve
pretty much everything you need from the system tables. These are metadata tables, their names start with
"RDBS$". Let's see how we can retrieve some useful informations from them.

Test data

We need a few sample tables, indices and views to test the following queries, so let's create them. We also
create a sample TRIGGER to emulate the autoincrement feature of mysql, and a simple stored procedure.

-- sample data to test Firebird system tables

-- TABLE TEST

CREATE TABLE TEST (

TEST _NAME CHAR(30) CHARACTER SET NONE NOT NULL COLLATE NONE,
TEST ID INTEGER DEFAULT '©' NOT NULL,

TEST DATE TIMESTAMP NOT NULL

);
ALTER TABLE TEST ADD CONSTRAINT PK TEST PRIMARY KEY (TEST ID);

-- TABLE TEST2 with some CONSTRAINTs and an INDEX
CREATE TABLE TEST2 (
ID INTEGER NOT NULL,
FIELD1 INTEGER,
FIELD2 CHAR(15) CHARACTER SET NONE COLLATE NONE,
FIELD3 VARCHAR(50) CHARACTER SET NONE COLLATE NONE,
FIELD4 INTEGER,
FIELD5 INTEGER,
ID2 INTEGER NOT NULL
);
ALTER TABLE TEST2 ADD CONSTRAINT PRIMARY KEY (ID2);
CREATE UNIQUE INDEX TEST2 FIELD1ID IDX ON TEST2(ID, FIELD1);
CREATE UNIQUE INDEX TEST2 FIELD4 IDX ON TEST2(FIELD4);
CREATE INDEX TEST2 FIELD5 IDX ON TEST2(FIELD5);

-- TABLE NUMBERS

CREATE TABLE NUMBERS (

NUMBER INTEGER DEFAULT 'O' NOT NULL,

EN CHAR(100) CHARACTER SET I1S08859 1 NOT NULL COLLATE IS08859 1,
FR CHAR(100) CHARACTER SET IS08859 1 NOT NULL COLLATE IS08859 1
);

-- TABLE NEWTABLE

CREATE TABLE NEWTABLE (

ID INT DEFAULT © NOT NULL,
SOMENAME VARCHAR (12),
SOMEDESCRIPTION VARCHAR (12)

);
ALTER TABLE NEWTABLE ADD CONSTRAINT PKINDEX IDX PRIMARY KEY (ID);


http://www.alberton.info/firebird_sql_meta_info.html
http://www.alberton.info/firebird_sql_meta_info.html
http://www.alberton.info/firebird_sql_meta_info.html
http://www.alberton.info/sql_server_meta_info.html
http://www.alberton.info/sql_server_meta_info.html
http://www.alberton.info/postgresql_meta_info.html

CREATE GENERATOR NEWTABLE SEQ;

-- VIEW on TEST
CREATE VIEW "testview"(
TEST NAME,
TEST 1D,
TEST DATE
) AS
SELECT *
FROM TEST
WHERE TEST NAME LIKE 't%';

-- VIEW on NUMBERS

CREATE VIEW "numbersview" (
NUM,
EN,
FR

) AS

SELECT *

FROM NUMBERS

WHERE NUMBER > 100;

-- TRIGGER on NEWTABLE (emulate autoincrement)
SET TERM ~ ;

CREATE TRIGGER AUTOINCREMENTPK FOR NEWTABLE
ACTIVE BEFORE INSERT POSITION 0O
AS BEGIN
IF (NEW.ID IS NULL OR NEW.ID = 0) THEN
NEW.ID = GEN_ID(NEWTABLE SEQ, 1);
END™

SET TERM ; ~©

-- SAMPLE STORED PROCEDURE
SET TERM * ;

CREATE PROCEDURE getEnglishNumber(N INTEGER)
RETURNS (
english number CHAR(100)
)
AS
BEGIN
FOR
SELECT EN
FROM NUMBERS
WHERE NUMBER = :N
INTO :english number
DO
BEGIN
SUSPEND;
END
END ©

SET TERM ; ~©

List TABLEs

Here's the query that will return the names of the tables defined in the current database:
SELECT DISTINCT RDB$RELATION NAME



FROM RDB$RELATION FIELDS
WHERE RDB$SYSTEM FLAG=0;

-- or

SELECT RDB$RELATION NAME
FROM RDB$RELATIONS
WHERE RDB$SYSTEM FLAG=0;

NB: the above queries will list both the user-defined tables AND views. To exclude the VIEWSs from the
resultset, you can write one of these queries:

SELECT DISTINCT RDB$RELATION NAME
FROM RDB$RELATION FIELDS

WHERE RDB$SYSTEM FLAG=0
AND RDB$VIEW CONTEXT IS NULL;

-- or

SELECT RDB$RELATION NAME
FROM RDB$RELATIONS

WHERE RDB$SYSTEM FLAG=0
AND RDB$VIEW BLR IS NULL;

List VIEWs

Here's the query that will return the names of the VIEWs defined in the current database:
SELECT DISTINCT RDB$VIEW NAME

FROM RDB$VIEW RELATIONS;
-- show only the VIEWs referencing a given table

SELECT DISTINCT RDB$VIEW NAME
FROM RDB$VIEW RELATIONS
WHERE RDB$RELATION NAME='TEST';

List users

SELECT DISTINCT RDB$USER
FROM RDB$USER PRIVILEGES;

List INDICES

Here's the query that will return the names of the INDICES defined in the TEST2 table. NB: the
CONSTRAINTSs are not listed

SELECT RDB$INDEX NAME
FROM RDB$INDICES

WHERE RDB$RELATION NAME='TEST2'
AND RDB$UNIQUE FLAG IS NULL
AND RDB$FOREIGN KEY IS NULL;

Detailed INDEX info
If you want to know which table columns are referenced by an index, try with this query:
SELECT RDB$INDEX SEGMENTS.RDB$FIELD NAME AS field name,



RDB$INDICES.RDB$DESCRIPTION AS description,
(RDB$INDEX SEGMENTS.RDB$FIELD POSITION + 1) AS field position
FROM RDB$INDEX SEGMENTS
LEFT JOIN RDB$INDICES ON RDB$INDICES.RDB$INDEX NAME =
RDB$INDEX SEGMENTS.RDB$INDEX NAME
LEFT JOIN RDB$RELATION CONSTRAINTS ON RDB$RELATION CONSTRAINTS.RDB$INDEX NAME =
RDB$INDEX SEGMENTS.RDB$INDEX NAME
WHERE UPPER(RDB$INDICES.RDB$RELATION NAME)='TEST2' -- table name
AND UPPER(RDB$INDICES.RDB$INDEX NAME)='TEST2 FIELD5 IDX' -- index name
AND RDB$RELATION CONSTRAINTS.RDB$CONSTRAINT TYPE IS NULL
ORDER BY RDB$INDEX SEGMENTS.RDB$FIELD POSITION

List CONSTRAINTSs
Here's the query that will return the names of the CONSTRAINTSs defined in the TEST2 table:

SELECT RDB$INDEX NAME
FROM RDB$INDICES
WHERE RDB$RELATION NAME='TEST2' -- table name
AND (
RDB$UNIQUE FLAG IS NOT NULL
OR RDB$FOREIGN KEY IS NOT NULL

);

List table fields
Here's the query that will return the names of the fields of the TEST2 table:

SELECT RDB$FIELD NAME
FROM RDB$RELATION FIELDS
WHERE RDB$RELATION NAME='TEST2';

If you want some more info about the field definitions, you can retrieve a larger subset of the fields available
in the RDBSRELATIONS_FIELDS table:

SELECT RDB$FIELD NAME AS field name,
RDB$FIELD POSITION AS field position,
RDB$DESCRIPTION AS field description,
RDB$DEFAULT VALUE AS field default value,
RDB$NULL FLAG AS field not null constraint
FROM RDB$RELATION FIELDS
WHERE RDB$RELATION_NAME '"TEST2'; -- table name

Detailed table field info

If you want a really detailed description of the field, you have to join the RDB$RELATIONS_FIELDS table
with RDB$FIELDS:

SELECT r.RDB$FIELD NAME AS field name,
r.RDB$DESCRIPTION AS field description,
r.RDB$DEFAULT VALUE AS field default value,
r.RDBSNULL FLAG AS field not “null constraint,
f.RDB$FIELD LENGTH AS field length
f.RDB$FIELD PRECISION AS field precision,
f.RDB$FIELD SCALE AS field scale,

CASE f.RDB$FIELD TYPE
WHEN 261 THEN 'BLOB'
WHEN 14 THEN 'CHAR'
WHEN 40 THEN 'CSTRING'



WHEN 11 THEN 'D_FLOAT'
WHEN 27 THEN 'DOUBLE'
WHEN 10 THEN 'FLOAT'
WHEN 16 THEN 'INT64'
WHEN 8 THEN 'INTEGER'
WHEN 9 THEN 'QUAD'
WHEN 7 THEN 'SMALLINT'
WHEN 12 THEN 'DATE'
WHEN 13 THEN 'TIME'
WHEN 35 THEN 'TIMESTAMP'
WHEN 37 THEN 'VARCHAR'
ELSE 'UNKNOWN'
END AS field type,
f.RDB$FIELD SUB TYPE AS field subtype,
coll.RDB$COLLATION NAME AS field collation,
cset.RDB$CHARACTER SET NAME AS field charset
FROM RDB$RELATION FIELDS r
LEFT JOIN RDB$FIELDS f ON r.RDB$FIELD SOURCE = f.RDB$FIELD NAME
LEFT JOIN RDB$COLLATIONS coll ON f.RDB$COLLATION ID = coll.RDB$COLLATION ID
LEFT JOIN RDB$CHARACTER SETS cset ON f.RDB$CHARACTER SET ID =
cset.RDB$CHARACTER SET ID
WHERE r.RDB$RELATION NAME='TEST2' -- table name
ORDER BY r.RDB$FIELD POSITION;

List GENERATORSs (sequences)

A GENERATOR is a sequential number that can be automatically inserted in a column with the GEN ID()
function. A GENERATOR is often used to ensure a unique value in a PRIMARY KEY that must uniquely
identify the associated row.

SELECT RDB$GENERATOR NAME
FROM RDB$GENERATORS
WHERE RDB$SYSTEM FLAG IS NULL;

List TRIGGERs

SELECT * FROM RDB$TRIGGERS
WHERE RDB$SYSTEM FLAG IS NULL;

-- list only the triggers for a given table
SELECT * FROM RDB$TRIGGERS

WHERE RDB$SYSTEM FLAG IS NULL
AND RDB$RELATION NAME='NEWTABLE'; -- table name

List FUNCTIONs (UDF)

SELECT * FROM RDB$FUNCTIONS
WHERE RDB$SYSTEM FLAG IS NULL;

List Stored Procedures
SELECT * FROM RDB$PROCEDURES:

List FOREIGN KEY constraints

As a bonus, I'm going to show how to get more information for the FOREIGN KEY constraints on a table, i.e.



one query that returns the FK names, the names of the table and field they're tied to, the names of the table
and field they reference and the action on update/delete. These are the two test tables and the FK constraint:

CREATE TABLE "a" (

"id" INTEGER NOT NULL,

"name" VARCHAR(20) DEFAULT '' NOT NULL
);
ALTER TABLE "a" ADD PRIMARY KEY ("id");

CREATE TABLE "b" (
"id" INTEGER NOT NULL,
"a id" INTEGER DEFAULT © NOT NULL
);
ALTER TABLE "b" ADD PRIMARY KEY ("id");
ALTER TABLE "b" ADD CONSTRAINT "FK b" FOREIGN KEY ("a id")
REFERENCES "a"("id") ON DELETE CASCADE ON UPDATE CASCADE;

And this is the query that will return the above mentioned values (replace the
table name in the last line to get the FK definitions relative to another
table):

SELECT DISTINCT

rc.RDB$CONSTRAINT NAME AS "constraint name",
rc.RDB$RELATION NAME AS "on table",
d1.RDB$FIELD NAME AS "on field",
d2.RDB$DEPENDED ON_NAME AS "references table",
d2.RDB$FIELD NAME AS "references field",
refc.RDB$UPDATE RULE AS "on update",
refc.RDB$DELETE RULE AS "on delete"
FROM RDB$RELATION CONSTRAINTS AS rc
LEFT JOIN RDB$REF CONSTRAINTS refc ON rc.RDB$CONSTRAINT NAME =
refc.RDB$SCONSTRAINT NAME
LEFT JOIN RDB$DEPENDENCIES d1 ON d1.RDB$DEPENDED ON NAME
LEFT JOIN RDB$DEPENDENCIES d2 ON d1.RDB$DEPENDENT NAME =
WHERE rc.RDB$CONSTRAINT TYPE = 'FOREIGN KEY'
AND d1.RDB$DEPENDED ON NAME <> d2.RDB$DEPENDED ON NAME
AND d1.RDB$FIELD NAME <> d2.RDB$FIELD NAME
AND rc.RDB$RELATION NAME = 'b' -- table name

= rc.RDB$RELATION NAME
d2.RDB$DEPENDENT NAME

Detailed CONSTRAINT info

If you want to retrieve detailed info from any constraint (fields, type, rules, referenced table and fields for
FOREIGN KEYs, etc.) given its name and table, here's the query to do so:

SELECT rc.RDB$CONSTRAINT NAME,

s.RDB$FIELD NAME AS field name,
rc.RDB$CONSTRAINT TYPE AS constraint type,
i.RDB$DESCRIPTION AS description,
rc.RDB$DEFERRABLE AS is deferrable,
rc.RDB$INITIALLY DEFERRED AS is deferred,
refc.RDB$UPDATE RULE AS on update,
refc.RDB$DELETE RULE AS on_ delete,
refc.RDB$MATCH OPTION AS match type,
i2.RDB$RELATION NAME AS references table,
s2.RDB$FIELD NAME AS references field,
(s.RDB$FIELD POSITION + 1) AS field position
FROM RDB$INDEX SEGMENTS s
LEFT JOIN RDB$INDICES i ON i.RDB$INDEX NAME = s.RDB$INDEX NAME



LEFT JOIN RDB$RELATION CONSTRAINTS rc ON rc.RDB$INDEX NAME =
LEFT JOIN RDB$REF CONSTRAINTS refc ON rc.RDB$CONSTRAINT NAME
refc.RDB$CONSTRAINT NAME
LEFT JOIN RDB$RELATION CONSTRAINTS rc2 ON rc2.RDB$CONSTRAINT NAME =
refc.RDB$CONST NAME_UQ
LEFT JOIN RDB$INDICES i2 ON i2.RDB$INDEX NAME = rc2.RDB$INDEX NAME
LEFT JOIN RDB$INDEX SEGMENTS s2 ON i2.RDB$INDEX NAME = s2.RDB$INDEX NAME
WHERE i.RDB$RELATION NAME='b' -- table name

AND rc.RDB$CONSTRAINT NAME='FK b' -- constraint name

AND rc.RDB$CONSTRAINT TYPE IS NOT NULL
ORDER BY s.RDB$FIELD POSITION

s .RDB$INDEX NAME

Detailed TRIGGER info
SELECT RDB$TRIGGER NAME AS trigger name,

RDB$RELATION NAME AS table name,
RDB$TRIGGER SOURCE AS trigger body,
CASE RDBS$TRIGGER TYPE
WHEN 1 THEN 'BEFORE'
WHEN 2 THEN 'AFTER'
WHEN 3 THEN 'BEFORE'
WHEN 4 THEN 'AFTER'
WHEN 5 THEN 'BEFORE'
WHEN 6 THEN 'AFTER'
END AS trigger_ type,
CASE RDB$TRIGGER TYPE
WHEN 1 THEN 'INSERT'
WHEN 2 THEN 'INSERT'
WHEN 3 THEN 'UPDATE'
WHEN 4 THEN 'UPDATE'
WHEN 5 THEN 'DELETE'
WHEN 6 THEN 'DELETE'
END AS trigger event,
CASE RDB$TRIGGER INACTIVE
WHEN 1 THEN O ELSE 1
END AS trigger enabled,
RDB$DESCRIPTION AS trigger comment
FROM RDB$TRIGGERS
WHERE UPPER(RDB$TRIGGER NAME)='AUTOINCREMENTPK'

Detailed VIEW info

If, given a VIEW name, you want to retrieve the field aliases and the field names in the original table, you can
run this query:

SELECT d.RDB$DEPENDENT NAME AS view name,

r.RDB$FIELD NAME AS field name,
d.RDB$DEPENDED ON NAME AS depended on table,
d.RDB$FIELD NAME AS depended on field
FROM RDB$DEPENDENCIES d
LEFT JOIN RDB$RELATION FIELDS r ON d.RDB$DEPENDENT NAME =
r.RDB$RELATION NAME
AND d.RDB$FIELD NAME = r.RDB$BASE FIELD
WHERE UPPER(d.RDB$DEPENDENT NAME)='NUMBERSVIEW'
AND r.RDB$SYSTEM FLAG = 0
AND d.RDB$DEPENDENT TYPE = 1 --VIEW
ORDER BY r.RDB$FIELD POSITION



If you want to get the VIEW definition, though, the above query is not enough.
It will only show the matches between aliases and real fields. Use the following
query to get the VIEW body:

SELECT RDB$VIEW SOURCE

FROM RDB$RELATIONS
WHERE RDB$VIEW SOURCE IS NOT NULL
AND UPPER(RDB$RELATION NAME) = 'NUMBERSVIEW';

One last tip

Since Firebird 2.1, you can query the database for some system information, like the engine version, the
network protocol, etc. Have a look at the doc/sql.extensions/README. context variables2.txt
file for a listing of all the system variables that are available. Here's an example of what you can do:

SELECT RDB$GET_CONTEXT('SYSTEM', 'ENGINE VERSION') AS engine version,

RDB$GET CONTEXT('SYSTEM', 'NETWORK PROTOCOL') AS protocol,
RDB$GET CONTEXT('SYSTEM', 'CLIENT ADDRESS') AS address
FROM RDB$DATABASE;

What else?

System tables are a powerful tool in the hands of the Interbase/Firebird db admins. The queries listed in this
page are just the top of the iceberg, you can retrieve a lot more from these tables. If you'd like to see some
other examples, or have some comments and/or suggestions, just drop me a mail (you can find my address
in the footer of this page) and I'll add them to this list.

HTH.



	Extracting META information from Interbase/Firebird SQL (INFORMATION_SCHEMA)
	Test data
	List TABLEs
	List VIEWs
	List users
	List INDICES
	Detailed INDEX info
	List CONSTRAINTs
	List table fields
	Detailed table field info
	List GENERATORs (sequences)
	List TRIGGERs
	List FUNCTIONs (UDF)
	List Stored Procedures
	List FOREIGN KEY constraints
	Detailed CONSTRAINT info
	Detailed TRIGGER info
	Detailed VIEW info
	One last tip
	What else?


